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a b s t r a c t

In urban areas, GPS signals are often reflected or blocked by buildings, which causes multipath
effects and non-line-of-sight (NLOS) reception respectively consequently degrading GPS positioning
performance. While improved receiver design can reduce the effect of multipath to some extent, it
cannot deal with NLOS. Modelling methods based on measurements have shown promise to reduce
the effect of NLOS signal reception. However, this depends on their ability to accurately and reliably
classify line-of-sight (LOS), multipath and NLOS signals. The traditional method is based on one feature
using signal strength as measured by the carrier to noise ratio, C/N0. However, this feature is ineffective
in capturing the characteristics of multipath and NLOS in all environments. In this paper, to improve
the accuracy of signal reception classification, we are using the three features of C/N0, pseudorange
residuals and satellite elevation angle with a gradient boosting decision tree (GBDT) based classification
algorithm. Experiments are carried out to compare the proposed algorithm with classifiers based on
decision tree, distance weighted k-nearest neighbour (KNN) and the adaptive network-based fuzzy
inference system (ANFIS). Test results from static receivers in urban environments, show that the GBDT
based algorithm achieves a classification accuracy of 100%, 82% and 86% for LOS, multipath and NLOS
signals, respectively. This is superior to the other three algorithms with the corresponding results of
100%, 82% and 84% for the Distance-Weighted KNN, 99%, 70% and 65% for the ANFIS and 98%, 35% and
95% for the traditional decision tree. With the NLOS detection and exclusion, the proposed GBDT with
multi-feature based method can provide a positioning accuracy improvement of 34.1% compared to
the traditional C/N0 based method.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Global navigation satellite systems (GNSS), especially the
global positioning system (GPS), are widely used in positioning,
navigation and timing (PNT), increasingly playing an important
role in every aspect of our lives. The development of smart
bus systems, emerging unmanned aerial vehicles (UAV) and au-
tonomous vehicles all require accurate and reliable GPS position-
ing solutions. GPS signals, however, are easily reflected or blocked
by buildings, with the consequences of either reduced accuracy
or no positioning solutions in some urban environments such
as canyons. There are three GPS signal reception types: 1⃝ line-
of-sight (LOS): direct signal between the satellite and the user
receiver; 2⃝ multipath: reflected and direct line-of-sight (LOS)
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signals received together; and 3⃝ non-line-of-sight (NLOS): where
the user can only receive a reflected signal. Positioning errors
caused by NLOS and multipath cannot be removed by differential
techniques [1,2] with the latter potentially resulting in position-
ing error of around 100 m [3]. Hence, many methods have been
proposed to mitigate the effects of multipath and NLOS, includ-
ing antenna design, signal processing and measurement-based
modelling.

Some expensive high-grade antennas could be used to miti-
gate multipath and NLOS effects [4–6]. Choke-ring antennas can
effectively reduce the multipath effect at low elevation. However,
they are not only expensive but also bulky and hence, inap-
propriate for some location-based applications. Dual-polarization
antennas could be used for NLOS detection. However, they are
mainly used for geodetic applications such as snow depth detec-
tion, due to the high cost and bulk of the antennas. Dierendonck
et al. showed how narrowing the spacing between early and late
receiver code correlators helps to mitigate multipath and NLOS
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effects [7]. Subsequently, multipath estimating delay lock loops
(MEDLL) [8], vision correlators and strobe correlators have been
developed [9–13]. These methods, referred to as signal processing
based multipath mitigation, assume that both direct and reflected
signals are able to reach the receiver, thus a signal processing
technique can be applied to filter the reflected signal. Unfortu-
nately, these methods do not mitigate the effect of NLOS signal
reception as it comprises of the reflected signal only.

Measurement-based modelling refers to using satellite ob-
servations and related information to mitigate NLOS reception
and multipath effects. GPS measurements can be augmented by
complementary additional sensors (such as inertial measurement
units) to improve performance in urban canyons. However, this
is highly dependent on the performance of the inertial measure-
ments and their mechanizations [14–21]. Integrating GNSS with
vision sensors can be effective in reducing multipath error and
resulting in the improvement of positioning accuracy. However,
the performance is affected by weather and environment fea-
tures [22]. In addition, the expense associated with such sensors
precludes their use in location-based services.

Another relatively low-cost approach to mitigate multipath
errors is to use a 3D city model as an information source. The
model can be used to classify the type of signal reception and thus
exclude NLOS signals during positioning [23,24]. However, this is
very likely to decrease the number of available satellites, leading
both to a weaker geometry and lower redundancy required for
the reduction in random errors and integrity monitoring. A more
reasonable approach is to use the NLOS signal for positioning
with the shadow matching method. Shadow matching utilizes 3D
city models to predict satellite visibility and then compares this
prediction with the measured satellite visibility to determine the
position [25–27]. In addition, a research team at the University
of Tokyo used a 3D city model to simulate signal propagation
path and computed simulated pseudorange measurements, be-
fore weighting each candidate based on the similarity between
the simulated and actual pseudorange measurements. The esti-
mated position was then obtained by the weighted average of the
candidate positions [28–30]. The performance of this method de-
pends on the correct and reliable classification of LOS, multipath
and NLOS signals.

The traditional method for signal classification is to define a
threshold value of C/N0 with higher C/N0 classified as LOS, while
those with lower C/N0 classified as NLOS. Although Yozevitch
et al. have shown that under conditions of no interference, C/N0
can serve as an excellent classifier [31,32], in practice LOS signals
can be detected with low C/N0 for various reasons (e.g., the
antenna location, momentary blocks, etc.) and NLOS signals can
be detected with relatively high C/N0. Hence, additional signal
features are required for reception type classification. Therefore,
in addition to C/N0, satellite elevation can be used as a feature for
the classification. In general, the higher the elevation, the more
likely it is for a signal to be LOS, but as the elevation decreases, the
satellite is more likely to be blocked by buildings and other man-
made obstacles, with the corresponding signal being NLOS. Deng
proposed a satellite selection algorithm based on satellite eleva-
tion angle and geometric dilution precision (GDOP). The influence
of elevation angle on positioning accuracy is analysed [33]. Wang
et al. also use C/N0 and satellite elevation angle to evaluate the
possibility of LOS [34]. In addition, larger pseudorange residuals
could point to a higher probability of NLOS or multipath, and
therefore, this can also be used to classify signal reception [35].
The other features that could be used for classification are pseu-
dorange change rate, horizontal dilution of precision (HDOP) and
vertical dilution of precision (VDOP) [32,36].

Machine learning has the advantages of high speed and ac-
curacy in dealing with various types of features and has been

used in recent years to improve the accuracy of GNSS positioning
and signal reception classification. Phan et al. used elevation
and azimuth angles as the key features of support vector ma-
chines (SVM) to mitigate the multipath effect [37]. Yozevitch
et al. used C/N0, elevation and other observations as features
of decision trees to classify LOS and NLOS [32]. Monsak et al.
proposed a method using machine learning to detect NLOS signals
in a collaborative vehicle environment. The results are com-
pared with several different machine learning algorithms [38].
Hsu et al. applied SVM to distinguish received GPS signal types,
using four features, including C/N0, temporal difference of C/N0,
pseudorange residual and pseudorange rate, extracted from raw
measurements [36]. Quan et al. proposed a convolutional neu-
ral network (CNN) based multipath detection method with the
sparse auto-encoder (SAE) for feature extraction [39]. Guermaha
et al. proposed a GNSS signal classifier system based on the
satellite elevation and the difference of C/N0 value, provided by
right-hand circular polarized (RHCP) and left-hand circular polar-
ized (LHCP) antennas, with the decision tree [40]. Sun et al. used
nine variables, including the C/N0, temporal difference of C/N0,
HDOP, VDOP, satellite elevation angle and azimuth angle, pseu-
dorange residual, consistency between delta pseudorange and
pseudorange rate and number of visible satellites, derived from
the raw GPS measurements together with an algorithm based on
an ANFIS to classify LOS, multipath and NLOS measurements from
GPS [41]. These studies have shown that machine learning is a po-
tentially effective method for GPS signal reception classification.
To date, this potential is still to be exploited, because it is difficult
to obtain a trade-off between high classification accuracy and low
computational cost with an increasing number of input features.

Therefore, in this paper we are aiming to use a number of in-
put features with various machine learning algorithms to improve
classification accuracy with a high computational efficiency. The
main known features from GPS raw measurements include C/N0,
HDOP, VDOP, satellite elevation angle, azimuth angle, pseudor-
ange residual, pseudorange rate and number of visible satellites.
This paper proposes a signal reception classifier based on the gra-
dient boosting decision tree (GBDT) algorithm using 3 variables
as features: C/N0, pseudorange residuals, and satellite elevation
angle. The reason for choosing these 3 features among the known
features are that C/N0, pseudorange residuals, and satellite eleva-
tion angle are highly related to the types of signal reception, and
their ability to distinguish the signal reception type have been
proved by previous studies [31–40]. For the other features, such
as HDOP, VDOP and GDOP, represent the geometric distribution
of visible satellites in a single epoch without a direct relationship
to signal reception type. The pseudorange rate only represents
an instantaneous change of the signal and therefore, has a weak
relationship to signal reception type. The contributions of this
paper are summarized as follows.

• A robust GBDT based GPS signal reception classification
algorithm is proposed by using C/N0, pseudorange residuals
and satellite elevation angle as the input features to improve
the performance of GPS signal reception classification.

• A sensitivity analysis process is designed and used to select
the most appropriate iteration number of the algorithm
to ensure the classification accuracy, while avoiding over
fitting of the GBDT algorithm

• The raw GPS measurements are collected in various urban
canyon environments to evaluate the performance of the
designed algorithm

2. Algorithm design

The framework of the algorithm (Section 2.1) consists of the
three functions of data labelling (Section 2.2), feature selection
(Section 2.3) and the GBDT based signal classification algorithm
(Section 2.4).
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Fig. 1. Classification algorithm functions.

2.1. Algorithm framework

The process of the machine learning based LOS/Multipath/
NLOS classification algorithm, including the offline and online
parts, is presented in Fig. 1. For the offline process, the dataset
containing a large number of LOS, NLOS and Multipath signals is
used for training. The LOS signals are labelled and obtained from
a GPS reference station located in an open area. With the aid of a
3D city model, GPS measurements collected from urban canyons
are classified and labelled as either multipath or NLOS by using a
ray-tracing algorithm. The five candidate machine learning algo-
rithms are used separately to train the labelled training dataset
for the extraction of classification rules. The extracted rules are
then used in the classification of newly collected unlabelled GPS
measurements in the online process.

2.2. Data labelling based on the 3D city model and ray-tracing

A 3D city model is an important information source for the
algorithm. In this paper, the horizontal coordinates of the 3D city
model were from the topographic map from the Land Department
of the HK government with a resolution of a 20 cm. The height
of the 3D city model was determined from Google map plus the
height of the equipment.

With the building corner coordinates from the 3D city model,
the ray-tracking method was applied to distinguish between the
multipath and NLOS measurements in the datasets collected from
urban canyons. The ray-tracing method uses known satellite,
reflector and receiver geometry to trace the direct and reflected
paths [42]. Satellite positions are obtained from the broadcast
ephemeris. The position of the reflectors are derived from a 3D
building model. The principle of ray-tracing is shown in Fig. 2.
Suppose that A, B, C and D are four vertices of a building, and
the corresponding position vectors are a, b, c and d respectively.
Since Fig. 2 is a side view of the reflector, only c and d are marked
in the picture. The normal vector n of the surface can be obtained
by taking the cross product of two non-parallel vectors formed by
the vertices of the surface. For example, using vertices A, B and
C, n can be calculated by:

n = (b − a) × (c − a) (1)

The steps of ray tracing are:
(1) Find the position r closest to the receiver antenna position

p on the reflecting surface and calculate the position vector
difference r − p between the two points.

Fig. 2. Ray-tracing technique.

First calculate an intermediate vector t0 before calculating the
position r , as shown in the following equation:

t0 = ((c − p) · n) /(n · n) (2)

c can be any point on the plane, here it is taken as one of the
vertices on the plane. After finding the intermediate vector t0,
calculate the position r:

r = p + t0n (3)

(2) Find the mirror image position vector q of the receiver
antenna position p relative to the reflection surface:

q = p + 2(r − p) (4)

(3) Connect the satellite position g to the mirror image q of
the antenna and find the intersection point s of the line segment
and plane consisting of the reflection surface.

s = g + t (q − g) (5)

where t is an intermediate quantity expressed as:

t = ((c − g) · n) /((q − g) · n) (6)

(4) Determine if the intersection is in the reflection surface.
If the intersection is outside of the surface, prepare two line



4 R. Sun, G. Wang, W. Zhang et al. / Applied Soft Computing Journal 86 (2020) 105942

segments to connect the point of reflection and the satellite, and
the point of reflection and the receiver. If both line segments are
not blocked by some other structure, they are considered as a
reflected path. If the intersection is outside the surface, a reflected
path does not exist. If the receiver only receives a reflected signal
from a satellite, the measurements are labelled as NLOS. If the
receiver receives both direct and reflected signals from a satellite,
the measurements are labelled as multipath.

2.3. Feature selection

Currently, the signal features can be easily obtained from
modern GNSS receivers. The features selected in this paper are:
C/N0, pseudorange residuals and satellite elevation angle.

(1) C/N0: the signal strength is measured in terms of the C/N0,
which is the ratio of carrier power to noise power per unit of
bandwidth in decibel-hertz (dB-Hz). Usually, the C/N0 of an NLOS
signal is smaller than that of a LOS signal. Therefore, it is the most
commonly used feature. However, since both low and high C/N0
values are possible for NLOS in urban canyons due to the different
reflection surface materials, classification simply based on C/N0
can be unreliable and therefore, necessitates the consideration of
additional features.

(2) Pseudorange residuals, η: the pseudorange ρ is computed
as the time ∆T from the signal being transmitted from the satel-
lite to the detection of the signal in the receiver multiplied by the
speed of light c plus the clock synchronization error t multiplied
by the speed of light c, which can be expressed in (7):

ρ = ∆T × c + t × c (7)

The satellite position can be resolved from the broadcast
ephemeris, so the positioning solution can be calculated by solv-
ing the pseudorange equations using least square estimation in
(8):

r =
(
GTG

)−1
GTρ (8)

where r is the receiver state, including the three-dimensional
position and the receiver clock offset. G denotes the design ma-
trix consisting of the unit LOS vector (u(i)

N , u(i)
E , u(i)

D ) between the
satellite and receiver in (9):

G =

⎡⎢⎢⎢⎢⎣
u(1)
N u(1)

E u(1)
D −1

u(2)
N u(2)

E u(2)
D −1

...
...

...
...

u(i)
N u(i)

E u(i)
D −1

⎤⎥⎥⎥⎥⎦ (9)

Once the positioning solution is calculated, the distance be-
tween the receiver and satellite can be obtained. The difference
between this distance and the pseudorange is called the pseudo-
range residual, expressed as η, which can be calculated in (10):

η = ρ − G · r (10)

Pseudorange residuals are important for LOS/Multipath/NLOS
signal reception classification [43]. In theory, the absolute value of
pseudorange residuals and the probability of NLOS are positively
related. This phenomenon becomes more obvious when only a
small portion of the signals are NLOS [44]. Hsu et al. showed
that the pseudorange residuals could be used as an indicator to
classify signal reception type if the number of measurements is
sufficient [35].

(3) Satellite elevation, θ : there is a significant positive cor-
relation between satellite elevation and probability of LOS. In
general, signals from satellites with higher elevation angles are
less likely to be blocked or reflected by buildings. As the elevation

decreases, however, there is a more likelihood of signal blockage
by buildings and other obstacles. Elevation angle can, therefore,
be used as a feature in signal reception classification. The satellite
elevation angle θ can be calculated as (11):

θ (i)
= − arcsin(u(i)

D ) (11)

2.4. Signal classification algorithm based on GBDT

GBDT is a supervised learning algorithm [45], also known
as gradient boost regression tree (GBRT) and multiple additive
regression tree (MART). It combines regression trees using a gra-
dient boosting technique and has been widely applied in various
disciplines, such as credit risk assessment [46], transport crash
prediction [47] and fault prognosis in electronic circuits [48]. It
replaces the difficult function minimization problem by using
least-squares function minimization, followed by only a single
parameter optimization based on the original criterion. Therefore,
this advantage could potentially facilitate the achievement of high
accuracy GPS signal reception classification [45].

In the designed GBDT based algorithm, each sample in the
training set is represented as xi = (C/N0i , ηi, θi), where i =

1, 2, 3, . . . ,N indicating the sequence number of the sample, and
N is the number of samples. The labelled training dataset can
be expressed as T = {(x1, y1) , (x2, y2) , (x3, y3) , . . . , (xN , yN)},
where yi ∈ {−1, 0, 1}, is the label of each sample, −1, 0, 1 rep-
resent the NLOS, Multipath and LOS signals, respectively. GBDT
minimizes the expected value of loss function L (yi, f (xi)) by
iteratively creating a weak learner ht (xi; a) that points in the
steepest-descent direction, i.e., the negative gradient direction.
The weak learner ht (xi; a) is a classification tree, the parameters
a are the splitting variables, split locations and the terminal node
means of the individual trees. The square loss function (12) is
used in this paper:

L (yi, f (xi)) =
1
2
(yi − f (xi))2 (12)

The input to GBDT is the labelled training dataset T , with M
as the number of iterations. The GBDT based GPS signal reception
classification algorithm flow is as follows:
1. Initialize a weak learner f0(x) for the training data:

f0 (x) = argmin
γ

N∑
i=1

L(yi, γ ) (13)

f0(x) is a regression tree consisting of only one root node. Since
L is selected to be the square loss function, f0 (x) becomes:

f0 (x) = y (14)

2. For m = 1 to M:
2.1 Compute the negative gradient

ỹi = −

[
∂L (yi, f (xi))

∂ f (xi)

]
f (x)=fm−1(x)

(15)

2.2 Replace the label yi of the training dataset with ỹi to obtain
a new dataset Tm =

{(
x1, ỹ1

)
,
(
x2, ỹ2

)
,
(
x3, ỹ3

)
, . . . ,

(
xN , ỹN

)}
,

and create a new regression tree hm(xi; am) by training the new
dataset Tm:

at = argmin
a

N∑
i=1

(ỹi − hm (xi; a))2 (16)

2.3 Update the strong learner:

fm (x) = fm−1 (x) + ρhm (x; am) (17)

where ρ is the learning rate, usually chosen to be a value between
0∼1 to prevent the overfitting.
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Fig. 3. Data collection and signal reception classification process.

3. After the iteration is terminated, output fM (x) as the final
classifier:

fM (x) = f0 (x) +

M∑
m=1

ρhm (x; am) (18)

4. fM (x) is used to predict the signal reception type of the newly
collected unlabelled sample x = (C/N0, η, θ) from the testing
dataset. The predicted values need to be rounded to the closest
value of 1, 0 or −1.

3. Field test and analysis of results

The proposed GPS signal reception classification algorithm
based on the GBDT is compared with current classification al-
gorithms, including decision tree, distance weighted k-nearest
neighbour (KNN) and the adaptive network-based fuzzy inference
system (ANFIS). Decision tree uses a tree structure learning as
a predictive model to go from observations about an item to
conclusions about the item’s target value. Distance weighted KNN
is an improved of KNN by heavier weighing of the close neigh-
bours, according to their distances to the query. ANFIS integrates
neural network (NN) training with fuzzy inference system (FIS),
taking linguistic rules from human experts, and adapting itself
by using the input–output data to obtain better training perfor-
mance [32,41,49]. The Experiment is presented in Section 3.1 and
the resulting data analysed in Section 3.2.

3.1. Experimental process

Five datasets were collected from four different locations
(Fig. 3). Static GPS data were captured for a period of 24 h at
an interval of 30 s at the SatRef HKSC reference station (Lo-
cation R), Hong Kong. The data collected from the Location R
was labelled as LOS. In addition, static GPS data were captured
over 24 h at the same interval in a built-up area in Hung Hom
(Location A) using a commercial GPS receiver, u-blox NEO-M8T,
as shown in Fig. 4. The dataset from Location A contained pre-
dominantly multipath and NLOS measurements. Additional static
GPS data were collected from different urban canyon environ-
ments (Location B and Location C). Since Locations B and C

Fig. 4. GPS data collection environment in a built-up area.

were both in the urban canyon, it was assumed that only NLOS
and multipath signals were present. The labelling of NLOS and
multipath was also obtained by using a 3D city model and ray-
tracing. In one case, however, it was difficult to obtain labelled
data due to the limitations of the 3D city model used with the
ray-tracing-technique.

Dataset D0 was created by combining the data collected from
Location A and Location R. D0 was subsequently used to generate
two datasets: training set D1 and testing set D2. In order to
prevent bias in the training results due to uneven sample distri-
bution, an equal number of LOS, NLOS, and Multipath samples
were randomly selected from D0 to form the training dataset
D1, which contained 24,000 samples. Thus, in D1, the labelling
distribution for each of LOS, NLOS, and multipath was one third.
Only 24,000 of the 96,992 samples were selected for training,
to reduce the computational load and prevent overfitting. There
were 18164 multipath samples in D0 and 8000 were used in
the training dataset. Therefore, 8000 samples of each type were
randomly selected from the remainder of D0 (i.e. excluding D1)
to form the testing dataset D2 in order to evenly distribute the
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Table 1
Summary of the datasets.
Dataset D0 D1 D2 D3 D4

Total samples 96 992 24 000 24 000 11 615 25 039
LOS (labelled as 1) 25 987 8 000 8 000 0 0
Multipath (labelled as 0) 18 164 8 000 8 000 3 114 8 831
NLOS (labelled as −1) 52 841 8 000 8 000 8 501 16 208

three types of samples in the dataset. Thus, the labelling dis-
tribution of D2 for each of LOS, NLOS, and multipath was also
one third, but with the labels removed. Each measurement in D1
and D2 contained the associated three features of: C/N0, pseu-
dorange residual and satellite elevation angle. Although some of
the features could be correlated over time, in this case, the time
dependency of the data was not considered when applying GBDT
algorithm.

We used training dataset D1 with each of the four machine
learning algorithms to determine classification rules. The clas-
sification rules extracted by the machine learning algorithms
were then used to classify the samples in D2. These were then
compared to the classification results with the reference label for
each sample (i.e. the previously removed labels), to calculate the
accuracy of the algorithm. To verify the validity of the extracted
rules, two more testing datasets collected from other locations
were used to feed the rules. Testing dataset D3 was collected
from Location B, close to location A in the urban canyon, while
the other testing dataset, D4, was from Location C, about three
blocks away from location A in the urban canyon. A summary of
the datasets is presented in Table 1.

3.2. Results and analysis

The GBDT algorithm was used to train dataset D1 to deter-
mine classification rules, subsequently used to classify the testing
datasets to determine classification accuracy. The results were
then compared to those from the three other machine learning
algorithms. The candidate machine learning algorithms could be
used with either single or multiple signal features. To determine
the benefit of the additional features, a comparison was made
between classification using C/N0 only and the multiples features
of C/N0, pseudorange residuals and satellite elevation angle.

The confusion matrix of the LOS, multipath and NLOS (1, 0
and −1) classification results for the different algorithms using
single feature-based classification (i.e. C/N0), by using the testing
dataset D2 are compared in Table 2. The accuracy in the table
represents the ratio (in percentage) of the number of samples
correctly classified to the total number of samples in the dataset.
The accuracy of each category refers to the ratio (in percentage) of
the number of samples correctly classified to the total number of
samples known as being in this category. For example, the NLOS
detection accuracy is calculated as the ratio (in percentage) of the
number of samples correctly classified as NLOS to the number
of total known NLOS samples. For single feature (C/N0) based
classification, the classification accuracies of the four algorithms
for multipath and NLOS, are consistently below 80% (ranging from
29% to 79.6%). The classification accuracy of LOS signals is higher
ranging from 95.1% to 99.9%.

As discussed earlier, additional features could be used to im-
prove accuracy the traditional single feature, C/N0 based classi-
fication. The scatter diagram in Fig. 5 shows the relationships
between the input features (i.e. C/N0, satellite elevation angle and
pseudorange residuals) and their corresponding labelled signal
reception types in the dataset D0. The green points denoting the
LOS signals are concentrated in high C/N0 areas, while the NLOS
and multipath samples are mainly distributed in medium and low

Fig. 5. Relationships between the features (i.e. C/N0 , satellite elevation angles
and pseudorange residuals) and the corresponding labelled signal reception
types in D0.

Fig. 6. Relationship between the features (i.e. C/N0 and satellite elevation angles)
and the corresponding labelled signal reception types in D0.

C/N0 areas. The large overlaps makes it difficult to distinguish
NLOS from multipath signals by using C/N0 only.

Fig. 6 shows the relationship between the features (i.e. C/N0
and satellite elevation angles) and the corresponding labelled
signal reception types in dataset D0. It can be seen that lower
elevation angles are dominated by NLOS signals, with most of
their C/N0 values less than 45dB-Hz. Multipath accounts for the
majority of the samples with elevation angles higher than 25
degrees.

Fig. 7 shows the relationship between features (i.e. C/N0 and
pseudorange residuals) and the corresponding labelled signal re-
ception types in dataset D0. The pseudorange residuals of LOS
signals range from −2 m to 2 m with a mean value close to zero.
The pseudorange residuals for multipath signals largely range
from −100 m to 100 m, while for NLOS signals the residuals are
always over 100 m.

From the analysis of the features and their corresponding
labelled signal reception types, consideration of the additional
features (satellite elevation angle and pseudorange residuals) has
the potential to improve the accuracy of the GPS signal reception
classification.
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Table 2
Confusion matrix of LOS (Noted as 1), Multipath (0) and NLOS (−1) classification results using
different algorithms based on a single feature (C/N0) for Testing Dataset D2.
Algorithms GBDT Decision tree

Label ID −1 0 1 −1 0 1

No of samples
−1 6365 1635 0 3729 4018 253
0 4197 3803 0 1836 4611 1553
1 0 391 7609 0 182 7818

Accuracy (%) 74.1 67.3
Category accuracy (%) 79.7 47.5 95.1 46.6 57.6 97.7

Algorithms Distance-weighted KNN ANFIS

Label ID −1 0 1 −1 0 1

No. of samples
−1 15 7735 250 6054 1691 255
0 0 6170 1830 3934 2329 1737
1 0 22 7978 0 365 7635

Accuracy (%) 59 66.7
Category accuracy (%) 69.4 29 99.9 75.7 29.1 95.4

Fig. 7. Relationships between features (i.e. C/N0 and pseudorange residuals) and
the corresponding labelled signal reception types in dataset D0.

The selection of an appropriate number of iterations, i.e. the
number of regression trees, is very important for the GBDT al-
gorithm. If the number of iterations is too small, the trained
classification rules cannot fully determine the relationships be-
tween input features and signal reception types. On the other
hand, if there are too many iterations, the results will be prone
to overfitting and the computational load is increased. Therefore,
in this paper, before comparing GBDT with other algorithms, a
sensitivity analysis of the relationship between the number of
iterations and classification accuracy of each dataset is carried
out. The classification rules determined from different numbers
of training iterations with training dataset D1 are used to classify
the signal reception types of the dataset D1 for internal valida-
tion (self-consistency check) and testing sets D2, D3, and D4 for
external validation (testing). The results are presented in Fig. 8.

Overall the classification accuracy increases with the number
of iterations. The classification accuracy of D2 has been increased
greatly as it is from the same data source as the dataset D1. This is
the reason why the classification rules based on the large number
of iterations obtained from D1 are applicable to D2. For the testing
datasets D3 and D4 from different locations compared to D1,
the classification accuracy increases initially with the increasing
iteration numbers but then starts to decline when the iteration
number reaches a certain value (i.e. 100) due to overfitting of
the algorithm. Although the more the number of iterations the
better the fitting of the extracted rules for the training dataset, it

Fig. 8. Relationship between the number of iterations and the GBDT
classification accuracy.

affects the adaptively of classification accuracy for the additional
datasets. Therefore, in order to keep a high classification accu-
racy without overfitting, the number of iterations is set to 100
in this paper. In addition, the classification accuracies of GBDT
for datasets D3 and D4 are always lower than that of D1 and
D2, reflecting the sensitivity of classification rules to different
locations.

A comparison of the classification results for different algo-
rithms using C/N0, pseudorange residuals and satellite elevation
angle based on the testing dataset D2, is presented in Table 3.
The classification accuracy and training time of these algorithms
are shown in Figs. 9 and 10, respectively. By comparing the
results from Tables 2 and 3, it is obvious that the classification
accuracies of multiple feature-based algorithms are higher than
that of single feature (C/N0) based algorithms. In addition, Table 3
shows that the overall classification accuracy of the GBDT algo-
rithm with the three features 89%, better than that with decision
tree and ANFIS, and marginally higher than that with distance-
weighted KNN. Although the NLOS classification accuracy of the
GBDT algorithm is lower than that of traditional decision tree, the
latter has a higher number of missed detections, with multipath
signals identified as NLOS. In the iterative process, GBDT focuses
on the samples with large training residuals (i.e. samples that are
difficult to classify). The final learner is the fusion of multiple re-
gression trees created in each iteration with overfitting mitigated
to some extent by setting the weight of each regression tree based
on the learning rate. For the decision tree, the training dataset can
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Fig. 9. Classification accuracy for different algorithms using multiple features
(C/N0 , Pseudorange Residuals and Satellite Elevation Angle) of the testing dataset
D2.

Fig. 10. Training time for different algorithms using multiple features (C/N0 ,
Pseudorange Residuals and Satellite Elevation Angle) of the testing dataset D2.

be better fitted by increasing the number of leaf nodes. However,
as the complexity of the tree increases, overfitting is more likely
to occur and leads to more misclassification. Therefore, the GBDT
composed of multiple regression trees is better than a single
complex decision tree. Although the classification accuracy of
weighted KNN is close to GBDT and with a lower training time
consumption, the classification rules from the KNN-algorithm are
less adaptable to other datasets. The classification accuracy of AN-
FIS is over 80% but with a high misclassification rate between the
multipath and NLOS measurements. The ANFIS based algorithm
also has the longest training time among all of the candidate
algorithms.

Dataset D3 and dataset D4 collected from location B and loca-
tion C in different urban canyon areas are further used to verify

the validity of the extracted classification rules. The classification
accuracies for the testing datasets D3 and D4 are compared in
Tables 4 and 5.

The classification accuracy performance based on the testing
dataset D3, from a similar urban environment to the training
data, is illustrated in Table 4. The GBDT based algorithm has
an overall classification accuracy of 77%, which is higher than
that of distance-weighted KNN (i.e. 68%) and ANFIS (i.e. 71.5%).
Although the decision tree-based algorithm has a relative higher
overall classification accuracy (i.e. 86.1%), the classification accu-
racy for the multipath is low (i.e. 54%). More multipath signals
are misclassified as NLOS signals by using the decision tree.

The performance based on the testing dataset D4, from a
different urban environment to the training data, is illustrated in
Table 5. The overall classification accuracy for all the candidate
algorithms, including the GBDT, are around 55%–60%, reflecting
the data sensitivity of the machine learning algorithms.

We have further evaluated the static positioning results based
on the elimination of the NLOS signals detected from the pro-
posed GBDT with multi-feature-based method and single C/N0
based method. Here, the threshold of single C/N0 is also deter-
mined by GBDT, which has a higher classification results com-
pared to the other algorithms in Table 2. The comparisons of the
static positioning accuracy Root Mean Square Error (RMSE) of the
dataset D2, D3 and D4 from Location A, B and C, respectively, are
shown in Table 6 and the comparisons of positioning results for
the three locations are shown in Figs. 11, 12 and 13, respectively.

For the Location A, where the urban training dataset is col-
lected, the 2D and 3D RMSE of the positioning accuracy for the
proposed method are 31.23 m and 59.82 m, 30.1% and 34.1%
higher than that of the single feature C/N0 based NLOS elimina-
tion method. As shown in Fig. 11, although positioning results for
both algorithms failed to cover ground truth due to the low mea-
surement source, compared with the single feature C/N0 based
NLOS elimination method, the positioning results of the proposed
method are more concentrated and closer to the ground truth.
For the Location B, which is not far away from location A, the
2D and 3D RMSE of the positioning results from the proposed
method are 44.06 m and 64.77 m, 19.4% and 19.8% higher than
that of the single feature C/N0 based NLOS elimination method.
The positioning results of the proposed method are closer to
the ground truth compared to the single C/N0 based method as
depicted in Fig. 12. For the Location C, from a different urban
canyon environment, the positioning accuracy improvement from
the GBDT with multi-feature based method is limited, with an
improvement of 2.2% for the 2D and an deterioration of 5.9% for
the 3D positioning results, compared to the single C/N0 based
method due to the similar low performance of the signal recep-
tion classification (i.e. about 55% for multi-feature and 57% for
single feature). It is indicated from the analysis results that for the
Location A and Location B, the proposed method can effectively
classify the signal reception types, and therefore improve the
positioning results after removal of the NLOS signal detected.
While for the Location C, the positioning accuracy could not be
improved due to the poor classification performance from the
proposed algorithm. It is validated that the higher accuracy of the
signal reception classification could result in more improvement
of the final GPS positioning results.

To be noted that the positioning based on the NLOS exclusion
could result in a 20% to 35% improvement based on proposed
algorithm for the similar urban environments. It is potential to
further improve the positioning results with the correction of
the detected NLOS signals used in the positioning process. The
labelling error caused by the inaccuracy borders of the 3D map is
also a reason to affect the final positioning accuracy. Therefore,
the positioning accuracy could be further improved with the
improved high-definition 3D map.
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Table 3
Confusion matrix of LOS (1), Multipath (0) and NLOS (−1) classification results using different
algorithms based on multiple features (C/N0 , Pseudorange Residuals and Satellite Elevation Angle)
for Testing Dataset D2.
Algorithms GBDT Decision tree

Label ID −1 0 1 −1 0 1

No of samples
−1 6858 1134 8 7583 395 22
0 1322 6522 156 5006 2795 199
1 0 14 7986 133 5 7862

Accuracy (%) 89 76
Training Time (s) 47.6 3.1
Category accuracy (%) 85.7 81.5 99.8 94.8 34.9 98.3

Algorithms Distance-weighted KNN ANFIS

Label ID −1 0 1 −1 0 1

No. of samples
−1 6521 1472 7 6256 1716 28
0 1266 6724 10 2237 5634 129
1 0 1 7999 0 47 7953

Accuracy (%) 88.5 82.7
Training time (s) 1.2 105
Category accuracy (%) 81.5 84.1 100 64.9 70.4 99.4

Table 4
Confusion matrix of LOS (1), Multipath (0) and NLOS (−1) classification results using different
algorithms based on multiple features (C/N0 , Pseudorange Residuals and Satellite Elevation Angle)
for Testing Dataset D3.
Algorithms GBDT Decision tree

Label ID −1 0 1 −1 0 1

No of samples
−1 6239 2262 0 8320 168 13
0 299 2726 89 1321 1681 112
1 0 0 0 0 0 0

Accuracy (%) 77.2 86.1
Category accuracy (%) 73.4 87.5 97.9 54

Algorithms Distance-weighted KNN ANFIS

Label ID −1 0 1 −1 0 1

No. of samples
−1 6217 2284 0 7047 1436 18
0 1024 1687 403 868 1252 994
1 0 0 0 0 0 0

Accuracy (%) 68 71.5
Category accuracy (%) 73.1 54.2 82.9 40.2

Table 5
Confusion matrix of LOS (1), Multipath (0) and NLOS (−1) classification results using different
algorithms based on multiple features (C/N0 , Pseudorange Residuals and Satellite Elevation Angle)
for Testing Dataset D4.
Algorithms GBDT Decision tree

Label ID −1 0 1 −1 0 1

No of samples
−1 8830 7378 0 14 485 1723 22
0 3694 5025 112 7 782 851 198
1 0 0 0 0 0 0

Accuracy (%) 55.3 61.3
Category accuracy (%) 54.6 56.6 89.4 9.6

Algorithms Distance-weighted KNN ANFIS

Label ID −1 0 1 −1 0 1

No. of samples
−1 9217 6991 0 9385 6663 160
0 2970 5775 86 3141 5374 316
1 0 0 0 0 0 0

Accuracy (%) 60 59
Category accuracy (%) 56.9 65.4 57.9 60.9

In summary, the classification rules extracted from the GBDT
algorithm are applicable to environments with largely similar
spatial and material characteristics (i.e. testing dataset D2 and D3)
but with low adaptively to datasets with different characteristics
(i.e. testing dataset D4). Further work is exploring further the
issue of adaptively and the development of real-time on-line
training algorithms.

4. Conclusions and future work

This paper has presented a GBDT based algorithm, using C/N0,
pseudorange residual and elevation angle as the features, to clas-
sify GPS signal reception as LOS, multipath and NLOS, mean-
while, the static positioning solutions are also calculated with the
detected NLOS eliminations. The signal reception classification
results of the testing dataset D2 (from Location A), from the
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Table 6
Comparisons of RMSE for Location A, B and C.
RMSE (m) E N U 3D 2D

Location A
C/N0 Based NLOS
Elimination

40.92 17.9 79.01 90.76 44.67

GBDT with
Multi-Feature-Based NLOS
Elimination

26.19 17.02 51.02 59.82 31.23

Improvement (%) 36.0 4.9 35.4 34.1 30.1

Location B
C/N0 Based NLOS
Elimination

20.13 45.41 63.72 80.80 49.67

GBDT with
Multi-Feature-Based NLOS
Elimination

18.35 35.61 50.89 64.77 40.06

Improvement (%) 8.8 21.6 20.1 19.8 19.4

Location C
C/N0 Based NLOS
Elimination

25.4 29.5 127.67 133.37 38.59

GBDT with
Multi-Feature-Based NLOS
Elimination

25.07 32.27 123.83 130.39 40.86

Improvement (%) 1.3 −9.4 3.0 2.2 −5.9

Fig. 11. Positioning results based on the elimination of the NLOS signals detected from the proposed GBDT with multi-feature-based method and single C/N0 based
method in Location A.

Fig. 12. Positioning results based on the elimination of the NLOS signals detected from the proposed GBDT with multi-feature-based method and single C/N0 based
method in Location B.
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Fig. 13. Positioning results based on the elimination of the NLOS signals detected from the proposed GBDT with multi-feature-based method and single C/N0 based
method in Location C.

same environment as the urban training dataset, have shown
that the overall accuracy of the multi-feature-based classification
algorithm (i.e. 89% for the static data) is much higher than that of
the single-feature-based C/N0 classification algorithm (i.e.74.1%).
Furthermore, for the correct classification of signals in the cat-
egories of NLOS and multipath, the local accuracies are 85.7%
and 81.5% respectively, better than the decision tree, distance-
weighted KNN and ANFIS algorithms. For the testing dataset D3
(from Location B), from the similar environment as the training
dataset, the algorithm achieves an overall classification accuracy
of 77.2%. In particular, the detection accuracies are 73.4% and
87.5% for the NLOS and multipath respectively, better than the
decision tree, distance-weighted KNN and ANFIS algorithms. The
computation time for the GBDT is higher than the decision tree
and distance-weighted KNN, however, this could be resolved by
higher computing processing power. Overall, considering compu-
tation time and classification accuracy, it is shown that GBDT is
the best of the algorithms investigated, for GPS signal reception
classification. It should be noted that, for some datasets with
different characteristics from the training dataset, such as D4
(from Location B), the classification performance is degraded due
to the inapplicability of the rules extracted from the training
environment.

Based on the GBDT with multi-feature-based classification re-
sults, the application for the static positioning results are further
analysed with the detected NLOS elimination. For the Location
A, a positioning accuracy improvement of 34.1% (3D RMSE) has
been achieved compared to the single C/N0 based method. For
the Location B, the proposed method could also provide an im-
provement of the positioning accuracy with 19.8% (3D RMSE),
lower than that for the Location A. While for the Location C, the
proposed method is unable to improve the positioning accuracy
due to the different spatial and material characteristics. Therefore,
environmental sensitivity is a key issue in the application of
classification algorithms. This could be addressed by developing
spatio-temporally dynamic algorithms, consideration of more sig-
nal related features and training data from a number of different
locations in future work.

For static positioning, the proposed method can be used to
detect the NLOS and multipath signals, which could then be
used in data pre-processing. The experimental results show that
removing NLOS based on the proposed method can improve the

positioning accuracy to some extent. However, simple elimina-
tion cannot meet the requirements of high-precision positioning.
The proposed method is a complement to the existing positioning
methods based on 3D city model such as shadow matching. In fu-
ture studies, we will combine the proposed method with 3D map
to achieve better static positioning accuracy and therefore, could
be used for the civil engineering applications such as building
maintenance, and structural integrity/deformation monitoring in
the urban canyons. For dynamic positioning, research is ongoing
based on a framework of grid of reference points from which data
will be captured for training. Users will then automatically obtain
the classification rules of nearby reference points for accurate
satellite signal reception type classification, to improve position-
ing. In addition, we will develop online data training for use with
the GBDT algorithm for real-time applications such as ground
vehicles, pedestrians and unmanned aerial vehicles (UAVs).
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